
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Analyzing Malicious DocumentsAuthored by Lenny Zeltser with feedback from Pedro Bueno and Didier Stevens. Malicious document analysis and related topics are covered in the SANS Institute course FOR610: Reverse-Engineering Malware, which Lenny co-authored. Creative Commons v3 “Attribution” License for this cheat sheet version 4.1. More at zeltser.com/cheat-sheets.

This cheat sheet outlines tips and tools for analyzing malicious documents, such as Microsoft Office, RTF, and PDF files.
General Approach to Document Analysis
Examine the document for anomalies, such as risky tags, scripts, and embedded artifacts.
Locate embedded code, such as shellcode, macros, JavaScript, or other suspicious objects.
Extract suspicious code or objects from the file.
If relevant, deobfuscate and examine macros, JavaScript, or other embedded code.
If relevant, emulate, disassemble and/or debug shellcode that you extracted from the document.
Understand the next steps in the infection chain.
Microsoft Office Format Notes
Binary Microsoft Office document files (.doc, .xls, etc.) use the OLE2 (a.k.a. Structured Storage) format.
SRP streams in OLE2 documents sometimes store a cached version of earlier VBA macro code.
OOXML document files (.docx, .xlsm, etc.) supported by Microsoft Office are compressed zip archives.
VBA macros in OOXML documents are stored inside an OLE2 binary file, which is within the zip archive.
Excel supports XLM macros that are embedded as formulas in sheets without the OLE2 binary file.
RTF documents don’t support macros but can contain malicious embedded files and objects.
Useful MS Office File Analysis Commands
	zipdump.py file.pptx
	Examine contents of OOXML file file.pptx.

	zipdump.py file.pptx -s 3 -d
	Extract file with index 3 from file.pptx to STDOUT.

	olevba file.xlsm
	Locate and extract macros from file.xlsm.

	oledump.py file.xls -i
	List all OLE2 streams present in file.xls.

	oledump.py file.xls -s 3 -v
	Extract VBA source code from stream 3 in file.xls.

	xmldump.py pretty
	Format XML file supplied via STDIN for easier analysis.

	oledump.py file.xls -p plugin_http_heuristics
	Find obfuscated URLs in file.xls macros.

	vmonkey file.doc
	Emulate the execution of macros in file.doc to analyze them.

	evilclippy -uu file.ppt
	Remove the password prompt from macros in file.ppt.

	msoffcrypto-tool
infile.docm outfile.docm -p
	Decrypt outfile.docm using specified password to create outfile.docm.

	pcodedmp file.doc
	Disassemble VBA-stomped
p-code macro from file.doc.

	pcode2code file.doc
	Decompile VBA-stomped
p-code macro from file.doc.

	rtfobj.py file.rtf
	Extract objects embedded into RTF file.rtf.

	rtfdump.py file.rtf
	List groups and structure of RTF file file.rtf.

	rtfdump.py file.rtf -O
	Examine objects in RTF file file.rtf.

	rtfdump.py file.rtf -s 5 -H -d
	Extract hex contents from group in RTF file file.rtf.

	xlmdeobfuscator
--file file.xlsm
	Deobfuscate XLM (Excel 4) macros in file.xlsm.

Risky PDF Keywords
/OpenAction and /AA specify the script or action to run automatically.
/JavaScript, /JS, /AcroForm, and /XFA can specify JavaScript to run.
/URI accesses a URL, perhaps for phishing.
/SubmitForm and /GoToR can send data to URL.
/ObjStm can hide objects inside an object stream.
/XObject can embed an image for phishing.
Be mindful of obfuscation with hex codes, such as /JavaScript vs. /J#61vaScript. (See examples.)
Useful PDF File Analysis Commands
	pdfid.py
file.pdf -n
	Display risky keywords present in file file.pdf.

	pdf-parser.py
file.pdf -a
	Show stats about keywords. Add “-O” to include object streams.

	pdf-parser.py file.pdf -o id
	Display contents of object id. Add “-d” to dump object’s stream.

	pdf-parser.py file.pdf -r id
	Display objects that reference object id.

	qpdf --password=pass --decrypt infile.pdf outfile.pdf
	Decrypt infile.pdf using password pass to create outfile.pdf.

Shellcode and Other Analysis Commands
	xorsearch -W
-d 3 file.bin
	Locate shellcode patterns inside the binary file file.bin.

	scdbgc /f file.bin
	Emulate execution of shellcode in file.bin. Use “/off” to specify offset.

	runsc32 -f file.bin -n
	Execute shellcode in file.bin to observe behavior in an isolated lab.

	base64dump.py file.txt
	List Base64-encoded strings present in file file.txt.

	numbers-to-string.py file
	Convert numbers that represent characters in file to a string.

Additional Document Analysis Tools
SpiderMonkey, cscript, and box-js help deobfuscate JavaScript that you extract from document files.
Use the debugger built into Microsoft Office to deobfuscate macros in an isolated lab.
Use AMSIScriptContentRetrieval.ps1 to observe Microsoft Office execute macros in an isolated lab.
Some automated analysis sandboxes can analyze aspects of malicious document files.
REMnux distro includes many of the free document analysis tools mentioned above.
